- cross-posted to:
- [email protected]
- cross-posted to:
- [email protected]
Over just a few months, ChatGPT went from correctly answering a simple math problem 98% of the time to just 2%, study finds. Researchers found wild fluctuations—called drift—in the technology’s abi…::ChatGPT went from answering a simple math correctly 98% of the time to just 2%, over the course of a few months.
It seems rather suspicious how much ChatGPT has deteorated. Like with all software, they can roll back the previous, better versions of it, right? Here is my list of what I personally think is happening:
- They are doing it on purpose to maximise profits from upcoming releases of ChatGPT.
- They realized that the required computational power is too immense and trying to make it more efficient at the cost of being accurate.
- They got actually scared of it’s capabilities and decided to backtrack in order to make proper evaluations of the impact it can make.
- All of the above
- It isn’t and has never been a truth machine, and while it may have performed worse with the question “is 10777 prime” it may have performed better on “is 526713 prime”
ChatGPT generates responses that it believes would “look like” what a response “should look like” based on other things it has seen. People still very stubbornly refuse to accept that generating responses that “look appropriate” and “are right” are two completely different and unrelated things.
In order for it to be correct, it would need humans employees to fact check it, which defeats its purpose.
It really depends on the domain. Asking an AI to do anything that relies on a rigorous definition of correctness (math, coding, etc) then the kinds of model that chatGPT just isn’t great for that kinda thing.
More “traditional” methods of language processing can handle some of these questions much better. Wolfram Alpha comes to mind. You could ask these questions plain text and you actually CAN be very certain of the correctness of the results.
I expect that an NLP that can extract and classify assertions within a text, and then feed those assertions into better “Oracle” systems like Wolfram Alpha (for math) could be used to kinda “fact check” things that systems like chatGPT spit out.
Like, it’s cool fucking tech. I’m super excited about it. It solves pretty impressively and effiently a really hard problem of “how do I make something that SOUNDS good against an infinitely variable set of prompts?” What it is, is super fucking cool.
Considering how VC is flocking to anything even remotely related to chatGPT-ish things, I’m sure it won’t be long before we see companies able to build “correctness” layers around systems like chatGPT using alternative techniques which actually do have the capacity to qualify assertions being made.
They made it too good and now they are seeking methods of monetization.
Capitalism baby.
deleted by creator
Can someone explain why they don’t take the approach where things are somewhat compartmentalized. So you have a image processing program, a math program, a music program, etc and like the human brain that has cross talk but also dedicated certain parts of your brain to do specific things.
It does that, they’re called expert subnetworks, but they’ve been screwing with them and now they’re kind of fucked.
deleted by creator
deleted by creator