The strongest experimental evidence for dark matter is the Galactic Center gamma-ray excess observed by the Fermi telescope and even predicted prior to discovery as a potential dark matter signature via weakly interacting massive particle dark matter self-annihilations. However, an equally compelling explanation of the excess gamma-ray flux refers to a population of old millisecond pulsars that also accounts for the observed boxy morphology inferred from the bulge old star population. We employ a set of Milky Way-like galaxies found in the hestia constrained simulations of the local universe to explore the rich morphology of the central dark matter distribution, motivated by the GAIA discovery of a vigorous early merging history of the Milky Way galaxy. We predict a significantly nonspherical gamma-ray morphology from the weakly interacting massive particle interpretation. Future experiments, such as the Cherenkov Telescope Array, that extend to higher energies, should distinguish between the competing interpretations.
full article no paywall https://arxiv.org/pdf/2508.06314